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Collisionless Boltzmann equation with an external periodic traveling force: Analytical solution
and application to molecular optics

Guangjiong Dong, Weiping Lu, and P. F. Barker
Physics Department, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United King
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We present an analytical solution to the collisionless Boltzmann equation for describing the distribution
function of molecular ensembles subject to an external periodic traveling force of pulsed optical fields. We
apply our solution to study a pulsed standing wave mirror for neutral molecules, recently proposed@P. Ryytty
et al., Phys. Rev. Lett.84, 5074 ~2000!#. Using our analytical solution we study the effects of the anharmo-
nicity of optical potential on the reflectivity of the molecular mirror and the corresponding optimal pulse
duration. We demonstrate that the reflectivity of the molecular mirror can be significantly improved by opti-
mizing the pulse duration of the external optical fields when taking into account the anharmonicity of molecu-
lar motion.
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I. INTRODUCTION

The Boltzmann equation describes the evolution of
position and velocity distribution of an ensemble of particl
It has extensive and important applications in the fields s
as rarefied gas dynamics@1#, statistical physics@2#, and solid
state physics@3#, but can rarely be solved analytically@4–6#.
The difficulty of solving the Boltzmann equation arises fro
the nonlinear nature of the collision term. However, if t
mean-free path for an ensemble of particles is much la
than the typical dimension of the system, or the duration
the external force exerted on the system is much shorter
the mean collision time, the collision term can be neglec
as a first approximation@2,4,5#. A collisionless environmen
is often realized in high temperature plasmas@7#, molecular
beams@8,9#, atomic and molecular optics@10#, and astro-
physics@11#. More than 50 years ago, Landau derived t
dispersion relation for electron plasma oscillations~Lagmuir
oscillation! using the collisionless Boltzmann equation a
the Poisson equation@7#. In most recent dipole force exper
ments using short pulsed lasers, solutions to the collision
Boltzmann equation agree well with experimental resu
@12–14#. The collisionless Boltzmann equation without e
ternal force can be solved readily@15,16#. However, it is not
a trivial task to find an analytical solution to this equati
when an external force is present@11–14,17–19#. If the ex-
ternal force is weak, a perturbative technique can be use
obtain an approximate analytical solution@11–13#. For arbi-
trary external forces, numerical techniques such as
second-order McCormack method@20# can be applied to
solve the equation@17–19#.

In this paper, we study the one-dimensional~1D! colli-
sionless Boltzmann equation with a periodic traveling for
which arises from the current research on manipulation
molecules with a one-dimensional far-off resonant opti
lattice. An optical lattice is a periodic dipole potential creat
by two counterpropagating optical fields@12–14,21,22#. In
previous experiments on coherent Rayleigh scattering@12#
and its application to a noninvasive measurement of te
perature of a gas@13#, this equation was used to describe t
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longitudinal position and velocity distribution of molecule
in an optical lattice and was solved with a perturbation te
nique for weak optical dipole forces. In a study of a puls
standing wave mirror, this equation was solved numerica
@21,22# to model the reflection of a molecular beam by
pulsed optical standing wave. Here, we present an analy
solution to the equation for any initial distribution by usin
the method of characteristics@15#. The method of character
istics reduces the problem of the distribution function of
ensemble of particles to that of a probability density functi
of a single particle; the distribution function of the syste
equals the initial probability density of the single particl
Two steps were required to obtain the solution. The first s
obtained a general solution to the~Newtonian! equation of
motion for the particle, referred as the characteristics of
collisionless Boltzmann equation with external force. T
second step was to recover the initial state~backward char-
acteristics! of the particle using the characteristics. Using th
procedure we obtain the analytical expression for the dis
bution function of the collisionless Boltzmann equation
terms of the initial condition and the parameters of the op
cal fields and molecules, such as optical intensity and
polarizability of molecules.

In the second part of this paper, we apply our analyti
solution to investigate a pulsed standing wave mirror
neutral molecules, which Ryytty and Kaivola studied n
merically@21#. Such a mirror may be important for designin
matter wave cavities@23,24#, atomic wave guides@25,26#,
and interferometers@27,28#. Mirrors for reflecting atoms by
an evanescent optical wave have been realized previo
@29,30#, but this approach fails for molecules and atoms w
complex energy structure@21,22#. Ryytty and Kaivola re-
cently proposed a new method for a molecular mirror ba
on the properties of the motion of molecules trapped in
optical potential wells formed by two counterpropagating o
tical fields @21,22#. They suggested that a molecular mirr
could be realized when the pulse duration of the stand
wave was chosen to be half a period of the simple harmo
motion of trapped molecules@21,22#. In this paper, we use
our analytical model to extend their approach considering
more general case of the anharmonic motion of molecule
©2003 The American Physical Society07-1
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a periodic potential. We study the effects of the anharmon
ity on optimal pulse duration and the reflectivity of the m
lecular mirror.

II. THE ONE-DIMENSIONAL COLLISIONLESS
BOLTZMANN EQUATION WITH AN EXTERNAL

OPTICAL PERIODIC TRAVELING FORCE

We study the interaction of a molecule in a collimat
molecular beam with a quasi-one-dimensional optical latt
as shown in Fig. 1. A pulsed optical lattice is created by t
counterpropagating optical fields«1(r ,t)5E1(t)sin(k1•r
2v1t) and«2(r ,t)5E2(t)sin(k2•r2v2t), whereE1 andE2
are the amplitudes of the two optical fields,r is a coordinate
vector,k1 and k2 are the wave vectors, andv1 and v2 are
frequencies of optical waves chosen to be far-off resonan
form quasielectrostatic potential@31#. We consider
optical pulses that have a square temporal profi
where E1(t)5E2(t)5E0 for 0,t<td , with a pulse
duration td , which is typically in the nanosecond rang
@12,13,18,21,22,32#. The x axis is set to be parallel to th
axis of the collimated molecular beam. The dipo
potential of a molecule in the nonresonant field is given
U(r ,t)52aE1E2/2 cos@(k12k2)•r2(v22v1)t#, where
a is polarizability, and the dipole forceG(r ,t)
exerted on a molecule is given byG 5 2¹U(r ,t)
52aE1E2 /2 sin@(k12k2)•r 2(v22v1) t#(k12k2). In
many experimental schemes @12,13,18,21,22,32#,
where the two optical fields are nearly counte
propagating, the angle between the optical fie
and the supersonic beam is very small (,2.5°), so that
the transverse wave vectorsk1' and k2' are small. In
these experiments, there is a small difference in the frequ
cies of the two beams and, therefore,k1''k2' . With these
approximations, sin@(k12k2)•r2(v22v1)t#5sin@(k1x
1k2x)x1 (k1'2k2')•r'2(v22v1)t# 'sin@(k1x1k2x)x2(v2
2v1)t#5sin@q(x2vLt)#, where k1x and k2x are the compo-
nents of wave vectorsk1 and k2 in the direction ofx axis,
and q5k1x1k2x , and vL5(v22v1)/q. Thus, the optical
force along the x axis, Guu52aE1E2/2sin@(k12k2)•r
2(v22v1)t#(k1x1k2x), is approximated by

Guu'2G0 sin@q~x2vLt !#, ~1!

whereG05aqE1E2/2 is the maximum force in the longitu
dinal direction. In the transverse direction, the forceG'

52aE1E2/2 sin@(k12k2)•r2(v22v1)t#(k1'2k2') is ap-
proximated by

FIG. 1. An optical lattice is created by two optical fields at ang
b'180°. A molecular beam with longitudinal velocityvD is in-
jected into the interference pattern of the two crossed optical fie
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G''2G0 sin@q~x2vLt !#~k1'2k2'!/q. ~2!

We note that the ratiou(k1'2k2')/qu is much less than 1%
for nearly counterpropagating beams (b.175° in Fig. 1!
and, therefore, the dipole forceG' in the transverse direction
is much less than the longitudinal forceGuu . In order to
demonstrate that we can neglect the transverse force in
ther calculations we estimate its effect on the molecu
beam for the duration of the optical fieldtd . The velocity
change induced by the force is given byuDv'u,uG0(k1'

2k2')/(mq)utd , and the displacement isuDsu,uv'0tdu
1uG0(k1'2k2')/(qm)utd

2/2, where m is the mass of the
molecule andv'0 is the initial transverse velocity. For a Rb2
~massm52.82310225 kg, a5135 Å3) molecular beam at a
temperature of 1 mK~the most probable velocity ofvm
'0.63 m/s), we estimate a transverse velocity change
uDv'u,8.5 mm/s, and a transverse displacementuDsu
,12.6 nm. These calculations are carried out using an o
cal field with an intensity 10 GW/cm2, a wave length 1064
nm, a pulse duration td510 ns, and the ratio
u(k1'2k2')/qu51%. The initial transverse velocityv'0 we
used in this estimation is twice the most probable veloc
determined by the temperature. As in this example, where
duration of typical experimental schemes is in the nanos
ond range, the transverse velocity changeuDv'u induced by
the potential is much less than the most probable velo
vm , and the transverse displacementuDsu is much less than
the typical width of the optical lattice (100mm). Therefore,
the weak transverse forceG' does not significantly chang
the transverse position or velocity of molecules within t
pulse duration we consider. We conclude that only a v
small fraction of the molecules will enter or escape from t
potential during these time periods.

We consider the motion of the molecules in a high inte
sity optical lattice where the momentum transferred to
molecules is several orders of magnitude larger than the
coil momentum. Under these conditions we can treat
molecules as classical particles@21,22#. Almost collisonless
conditions can be created within a pulsed supersonic b
@8,9#, when the interaction time between the optical fiel
and molecules is shorter than the collision time. For t
situation the position and velocity distribution functio
f (r ,v,t) can be described by the collisionless Boltzma
equation@2,4,5#,

] f ~r ,v,t !

]t
1v•

] f ~r ,v,t !

]r
1

G~r ,t !

m
•

] f ~r ,v,t !

]v
50. ~3!

During the short interaction time, the transverse motion
molecules cannot be significantly affected by the weak tra
verse forceG' , we thus treatG' as a perturbation, and
neglectG' in Eq. ~3! in the zero-order approximation of th
position and velocity distribution functionf (r ,v,t). With this
approximation, we can decouple the transverse motion to
longitudinal motion and make the approximation th
f (r ,v,t)5 f i(x,vx ,t) f'(v' ,v' ,t), where the transverse mo
lecular beam distribution functionf'(v' ,v' ,t) and the lon-
gitudinal molecular beam distribution functionf i(x,vx ,t)
are independent. As the effect of the external fields on

s.
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COLLISIONLESS BOLTZMANN EQUATION WITH AN . . . PHYSICAL REVIEW E68, 016607 ~2003!
transverse molecular beam distribution can be neglected
parallel molecular beam distribution functionf i(x,vx ,t) can
be determined by the 1D Boltzmann equation

] f i~x,vx ,t !

]t
1v

] f i~x,vx ,t !

]x
1

Gi~x,t !

m

] f i~x,vx ,t !

]v
50.

~4!

The use of Eq.~4! is borne out by recent experiment
work in coherent Rayleigh scattering@12# and its applica-
tions @13# where the distribution function was measured u
ing light scattering techniques. The experimental results
be well described by Eq.~4!. This equation has also bee
used in theoretical treatments to describe a pulsed stan
wave mirror @21,22# for molecules, and the deceleration
cold molecules in a molecular beam using a one-dimensio
far-off resonant optical lattice@18#. This formalism could
also be used to model recent experiments demonstrating
decelerating, trapping, and bunching of molecules by a S
deceleration@33–35# and measurement of the polarizabili
of molecules with the optical dipole force@32#.

In the following, we study how to solve Eq.~4! analyti-
cally. For convenience, we drop the subscriptuu from the
distribution functionf i(x,vx ,t).

III. ANALYTICAL SOLUTION TO THE
ONE-DIMENSIONAL COLLISIONLESS BOLTZMANN

EQUATION WITH AN EXTERNAL PERIODIC
TRAVELING FORCE

The one-dimensional collisionless Boltzmann equat
with an external periodic traveling force, given by Eq.~4!,
has been used to model the position and velocity distribu
of molecules in 1D optical lattices. When the optical dipo
force is weak, 1D perturbation solutions can be used to
curately model experiments@12–14#. However, no analytica
solution to this equation for arbitrarily strong fields has be
presented. In this section, using the method of the chara
istic, we find an analytical solution, for arbitrarily stron
fields, which are of interest for a number of applications su
as a pulsed standing wave mirror@21,22# and for the creation
of cold molecules by deceleration@18,33–35#.

Before we solve Eq.~4!, we introduce a normalization
transformation. We denote the phase of the traveling force
u,

u5q~x2vLt !, ~5!

and introduce the normalized timet and normalized velocity
h by

t5tv0 , ~6!

h5~vx2vL!/vn , ~7!

wherev05AG0q/m andvn5AG0 /(mq). We further intro-
duce the normalized distribution functionf (u,h,t) in the
new normalized phase space (u,h) by

f ~u,h,t!5vn f ~x,v,t !/q. ~8!
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Inserting Eqs.~5!–~8! into Eq.~4!, we obtain the normalized
collisionless Boltzmann equation,

] f ~u,h,t!

]t
1h

] f ~u,h,t!

]u
2sin~u!

f ~u,h,t!

]h
50, ~9!

which we solve by using the method of characteristics@15#
by rewriting this equation into the following three equation

d f„u~t!,h~t!,t…

dt
50, ~10!

du~t!

dt
5h~t!, ~11!

dh~t!

dt
52sin@u~t!#. ~12!

The functionf „u(t),h(t),t… in Eq. ~10! can be interpreted
as the probability density function of a molecule@4#, the
motion of which is described by Eqs.~11! and ~12!, which
are the equations of motion for a pendulum driven by a fo
of sine form. From Eq.~10!, we obtain

f „u~t!,h~t!,t…5 f „u~0!,h~0!,0…5 f 0„u~0!,h~0!…,
~13!

which shows that the probability density in the phase sp
is unchanged in time, even with the presence of the exte
force. This is due to the collisionless environment of t
molecules. This result is consistent with the recent exp
ments with a Stark decelerator@33,34#. Using Eq.~13! and
the normalization relation Eq.~8!, the distribution function is
given by

f ~x,v,t !5q f0„u~0!,h~0!…/vn , ~14!

indicating that the distribution function of an ensemble
molecules is proportional to the probability density functi
of a single molecule in the collisionless environment. Ho
ever, the initial position„u(0),h(0)… of the molecule is un-
known, therefore, to obtain the analytical relation~character-
istics! between„u(t),h(t)… and „u(0),h(0)…, we need to
solve Eqs.~11! and ~12! for u(t) andh(t), and then carry
out an inverse procedure to determine„u(0),h(0)… ~back-
ward characteristics! from „u(t),h(t)….

Equations~11! and~12! are the equations of motion for
nonlinear pendulum, which has been extensively studied
mechanics@36# and engineering fields@37,38#. In previous
works, the periodic behavior of the nonlinear pendulum w
studied@36–39# and some solutions were presented for s
cial initial conditions@39#. However, in this paper we stud
the motion of an ensemble of molecules, which requires g
eral solutions to Eqs.~11! and ~12! so that the inverse pro
cedure can be done.

To solve the equations of motion~11! and ~12!, we first
present the corresponding normalized Hamiltonian of a m
eculeH„u(t),h(t)… by

H„u~t!,h~t!…5h~t!2/22cos@u~t!#. ~15!
7-3
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From Eq.~15!, we obtain the normalized velocity

h~t!56AN22sin2@u~t!/2#, ~16!

where the parameterN is defined as

N5A@H„u~t!,h~t!…11#/25Ah~t!2/41sin2@u~t!/2#.

~17!

Since the system is conservative, the parameterN is time
independent. The dynamical behavior of the molecules
classified by the parameterN. When N<1 molecules are
trapped by the potential well@the second term in the righ
side of Eq.~15!# and forN.1 molecules are untrapped@39#.

If a molecule is untrapped by the potential wells, it trave
from one potential well to another, whereas if trapped
oscillates within one of the potential wells@39#. We discuss
these two motion states separately. In this section we pre
analytical results for trapped molecules. The analytical
sults for untrapped molecules are given in the Appendix
The mathematical procedures for the two cases are simi

For the trapped caseN<1, we define a functionj(t) by

N sin@j~t!#5sin@u~t!/2#. ~18!

Differentiating both sides of Eq.~18! with respect to the
normalized timet, and using Eq.~16! we obtain

dj~t!

dt
56A12$N sin@j~t!#%2, ~19!

which has the solution

j~t!5am~t1f,N!, ~20!
-

e
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where am(t1f,N) is a Jacobian elliptical amplitude func
tion @40,41# and f5*0

j(0)$12@N sin(b)#2%21/2db is a con-
stant. Using Eqs.~18! and~20!, the normalized velocity@Eq.
~16!# becomes

h~t!52N cn~t1f,N!, ~21!

where cn(t1f,N) is a Jacobian elliptical cosine functio
@40,41#. The velocityh(t) is a periodic function oft, and its
periodPtrap(N) is given by

Ptrap~N!54E
0

p/2

$12@N sin~b!#2%21/2db54K~N!,

~22!

whereK(N) is the complete Jacobian elliptic integral of th
first kind @40,41#. Equation~22! shows that the period of a
trapped molecule depends only on the parameterN.

We integrate Eq.~21! with respect to the normalized tim
t and obtain

u~t!5u~0!12 sgn@sn~ t1f,N!#arccos@dn~ t1f,N!#

22 sgn@sn~f,N!#arccos@dn~f,N!#, ~23!

where sgn(x) is a sign function, sgn(x)51 for x.0, and
21 otherwise.u(t) and h(t) given by Eqs.~23! and ~21!
are a general solution~characteristics! of Eqs.~11! and~12!.

Now let us study the inverse process to obtain the ini
phase and velocity„u(0),h(0)… from „u(t),h(t)…. The ini-
tial velocity h(0) is given by Eq.~21! for t50. Using f
5t1f2t and the addition theory of Jacobian elliptic fun
tions @40,41#, we have
h~0!52N
cn~t1f,N!cn~t,N!1sn~t1f,N!sn~t,N!dn~t1f,N!dn~t,N!

12N2@sn~t1f,N!sn~t,N!#2
. ~24!
f

To find the relations of allf-dependent terms in Eq.~24! to
the state„u(t),h(t)…, we differentiate both sides of Eq.~21!
with respect to the normalized timet, and compare this ex
pression fordh(t)/dt with Eq. ~12! to obtain

sin@u~t!#52N sn~t1f,N!dn~t1f,N!. ~25!

Using Eqs.~17!, ~21!, ~25!, and the relations between th
Jacobian elliptical functions, from Eq.~24!, we finally get an
analytical expression for the initial velocityh(0) by u(t)
andh(t),
h~0!5
h~t!cn~t,N!1sin@u~t!#sn~t,N!dn~t,N!

12FsinS u~t!

2 D sn~t,N!G2 .

~26!

Next, we determine the expression for initial phaseu(0)
from Eq. ~23!. Usingf5t1f2t and the addition theory o
elliptical functions @40,41#, sn(f,N) and dn(f,N) in Eq.
~23! are given as
sn~f,N!5
sn~ t1f,N!cn~ t,N!dn~ t,N!2cn~ t1f,N!dn~ t1f,N!sn~ t,N!

12@Nsn~ t1f,N!sn~ t,N!#2
, ~27!

dn~f,N!5A12@N sn~f,N!#2. ~28!
7-4
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From Eq.~21! and the relations between the Jacobian elliptical functions@40,41#, dn(t1f,N) is determined by

dn~ t1f,N!5A12N21@N cn~ t1f,N!#25A12N21h~t!2/4. ~29!

Further using Eq.~25!, we obtain

sn~ t1f,N!5sin@u~t!#/@2NA12N21h~t!2/4#, ~30!

and by inserting Eqs.~21!, ~29!, and~30! into Eq. ~27!, we arrive at

sn~f,N!5
sin@u~t!#cn~ t,N!dn~ t,N!2h~t!@12N21h~t!2/4#sn~ t,N!

2N$12@N22h~t!2/4#sn~ t,N!2%A12N21h~t!2/4
. ~31!
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Substituting Eqs.~28!–~31! into Eq. ~23!, we can determine
u(0) with u(t) andh(t).

In summary, the procedure for calculating the distributi
function of the collisionless Boltzmann equation~4! is the
following.

~1! Calculatet, h(t), u(t) by the normalization transfor
mation, Eqs.~5!–~7!, from t,v,x.

~2! CalculateN by Eq. ~17!.
~3! If N,1, first determine „u(0),h(0)… from

„u(t),h(t)… using Eqs.~26! and ~23!, and then obtain the
distribution functionf (x,v,t) by inserting„u(0),h(0)… into
Eq. ~14!.

IV. APPLICATION TO A PULSED STANDING WAVE
MIRROR FOR NEUTRAL MOLECULES

In this section, we apply our analytical results to the stu
of a pulsed standing wave mirror, recently proposed as
optical element for reflecting a molecular beam@21,22#. A
schematic diagram of the two optical fields interacting with
supersonic molecular beam to produce a pulsed stan
wave is shown in Fig. 1. The two optical fields have the sa
frequency, and the force in Eq.~1! is time independent (vL
50).

To understand the dynamics of molecules in pulsed sta
ing wave mirror ~stationary optical lattice!, we present a
phase space (u,h) plot in Fig. 2. Each line is an equal energ
line corresponding to a different value of the parameteN
defined in Eq.~17!. Dotted lines are separatrix, which defin
two dynamical regions: molecules enclosed by them
trapped, whereas molecules outside are untrapped. Arr
show the direction of the motion of the molecules. As sho
in Fig. 2, untrapped molecules move from one potential w
to another and keep their initial motion direction unchang
whereas trapped molecules move along close trajectories
the directions of their motions change periodically. The
fore, only trapped molecules can be reflected by the dip
potential well. The cross points of the solid, dashed, a
dot-dashed orbits of trapped molecules with the linesh
5hD and h52hD are denoted byA,B,C, . . . ,G,H as
shown in this figure. It can be seen that there are three
namical processes contributing to reflection of molecu
from hD to 2hD . The first of these processes involves m
ecules whose initial phases are between 0 andp. This cor-
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responds to those traveling fromA to B in Fig. 2. For this
situation, the time required for reflection is shorter than
half-oscillation period. The duration is given byt r
52@K(N)2cn21(hD /N,N)], where cn21 is the inverse
function of the Jacobian cosine function cn. The timet r for
this process, and the following two processes, are obta
with the results presented in Sec. II and are given in App
dix B. The second process involves two groups of molecu
whose initial phases are symmetrical withu50. This corre-
sponds to the groups atF and C traveling toD and E, re-
spectively, as shown in Fig. 2. The two groups reverse th
initial velocity after traveling half their orbit and, therefore
with a half of the period, given byt r52K(N). A third pro-
cess involves molecules whose initial phases are betw
2p to 0, which are reflected after traveling more than a h

FIG. 2. ~a! Each line in the (u,h) space is an equal energy lin
corresponding to a value of the parameterN defined in Eq.~17!.
The dotted lines are separatrix and the region enclosed by them
trapping region. The arrows show the direction of motion, and
points denoted byA,B,C, . . . ,G,H are the crossing points of th
orbits of the trapped molecules with the linesh5hD and h
52hD . HerehD is the initial velocity. The three dynamical reflec
tion processes are revealed: the first is fromA to B, the second is
from C to E and fromF to D, and the third is fromG to H. ~b! The
time t r required for reflecting molecules with the initial velocit
hD50.264 varies with the parameterN.
7-5
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of the period. These are molecules that travel fromG to H,
with time t r52@K(N)1cn21(hD /N,N)#. The timet r re-
quired for each of the three processes, corresponding to
ferent equal energy lines, varies in a wide range as show
Fig. 2~b!, which implies that the trapped molecules cannot
reflected at the same time. Consequently, there is a que
of what is the optimal pulse duration to realize maximu
reflectance. In the following we apply the analytical resu
obtained in Sec. III to study the velocity distribution of th
molecular beams and determine the optimal pulse durati

The initial longitudinal velocity distribution of a free mo
lecular beam is described by a Maxwellian model,f 0(x,vx)
5exp@2(vx2vD)2/vm

2 #/(2pApvm) with vm5A2KBT/m,
whereKB is the Boltzmann constant andvD is the molecular
beam velocity. As the dipole force is of the form of Eq.~1!,
the distribution of a molecular beam after the optical fie
are turned on isf (x,vx ,t)5q f(u,h,t)/vn , as given by Eq.
~14!, where the normalized distributionf (u,h,t) is read as

f ~u,h,t!5hm exp$2hm
22@h0~u,h,t!2hD#22%/~2pAp!,

~32!

wherehm5vm /vn is the normalized 1/e width of the initial
distribution, hD5vD /vn is the normalized beam velocity
and h0(u,h,t) is the initial velocity of a molecule with
phaseu and normalized velocityh at normalized timet.
h0(u,h,t) depends on the parameterN and is calculated by
Eq. ~26! for N<1, otherwise by Eq.~A10!. Due to the peri-
odic motion of the molecule, the velocityh0(u,h,t) is a
periodic function with a period given by Eq.~22! or Eq.
~A5!. Consequently, the normalized distributionf (u,h,t) is
also a periodic function.

Based on Eq.~32!, we now study the reflection of th
molecular beam by the pulsed standing wave. As an
ample, we consider the beam with a normalized veloc
hD52.6431021 and normalized widthhm56.9031023,
which corresponds to Rb2 molecules with the beam velocit
vD510 m/s and temperatureT5700 mK in an optical lattice
formed by optical field of intensity 7.25 GW/cm2. For this
parameter set, the motion of the molecules in the reg
around the antinodes is quasiharmonic and, therefore
similar to the case discussed in references@21,22#.

The velocity distributions of reflected molecular beam a
shown in Fig. 3~a! for several pulse durations. The norma
ized velocity distributionp(h,td) is calculated byp(h,td)
5*2p

p exp$2hm
22@h0(u,h,td)2hD#22%/(2pAphm)du. The

dotted and solid lines, respectively, correspond totd5p,
which is half a period of the simple harmonic motion, a
td53.18. Both the distributions are similar to Gaussian c
tered ath52hD and have almost the same width as that
the initial distribution. On the contrary, the dashed line
td50.53 is asymmetric withh, whereas the dot-dashed lin
for td53.22 is double peaked. The peak fortd53.18 is the
highest. Figure 3~a! reveals that the velocity distribution
sensitively depend on the pulse duration and the opti
pulse duration occurs attd.p. With our analytical results
we can quickly calculate the velocity distributio
p(2hD ,td) for different pulse durations to determine a
optimal durationtd . Figure 3~b! gives the dependence o
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p(2hD ,td) for different values oftd . On increasing the
duration, the first peak appears attd50.53 corresponding to
the first dynamical process of transferring molecules fr
hD to 2hD ~reflection! as revealed in Fig. 2, and the seco
occurs attd53.18 corresponding predominantly to the latt
two processes discussed in Fig. 2. The following peaks oc
because of the periodic nature of the molecular motion in
potential wells. However, the molecules that contribute to
second peak have different periods, therefore at a later t
not all of them arrive at the same velocity2hD at the same
time. Consequently, the peak height decreases with time.
second peak gives the highest concentration of reflected m
ecules ath52hD and thereforetd53.18 is the optimal
pulse duration.

Figure 4 shows a more general relation of the optim
duration td,opt and their corresponding peak heigh
p(2hD ,td,opt) to beam velocityhD . On increasing the
beam velocityhD , it shows that the optimal durationtd,opt
increases from half a period of simple harmonic periodp,
but the peak heightp(2hD ,td,opt) decreases. These resul

FIG. 3. The reflection of a molecular beam with velocityhD

52.6431021 and an initial 1/e velocity width of hm

56.9031023 by a pulsed standing wave.~a! The velocity distribu-
tion for ensemble of reflected molecules corresponding to sev
pulse durations.~b! The dependence of the distribution functio
p(2hD ,td) on the pulse durationtd .

FIG. 4. The dependence of the optimal durationtd,opt ~solid
line! and the velocity distributionp(2hD ,td,opt) ~dashed line! on
the beam velocityhD . Due to anharmonicity, the optimal puls
duration td,opt increases with increasing the beam velocityhD ,
while the velocity density at the velocity2hD , p(2hD ,td,opt),
decreases.
7-6
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are consistent with the previous finding@21# that anharmo-
nicity is more profound for higher velocity such that th
reflectance is decreased. We note, however, even when
motions of molecules are predominantly anharmonic
higher beam velocity, reflection can still be achieved, thou
with significantly reduced peak height. This result agre
with the dynamical analysis of reflecting molecules shown
Fig. 2.

V. SUMMARY

We have obtained a general analytical solution to the c
lisionless Boltzmann equation describing the distribution
an ensemble of molecules in an external periodic trave
field for arbitrary initial conditions. The analytical solutio
enables us to investigate the relation of the final distribut
function to the initial velocity distribution, its bulk velocity
and its initial velocity width, as well as the magnitude of t
external force. Our results can be used to aid in the desig
pulsed standing wave mirrors@21,22#, coherent Rayleigh
scattering using arbitrary fields@12–14#, deceleration of mo-
lecular beams with optical lattices@18#, and the measuremen
of molecular polarizability by an optical dipole force@32#.
As a case study, we have applied our analytical method
study the pulsed standing wave mirror for Rb2 molecules and
show that the velocity distribution of the reflected molecu
is sensitively dependent on the pulse durations of the op
fields. We have further studied how the optimal pulse du
tion is found as a function of the molecular beam veloc
and show that it is, in general, larger than half a period of
simple harmonic motion. Moreover, we show that the refl
tance of the pulsed standing wave mirror can be significa
improved by optimizing the pulse duration when compa
to the simple harmonic model previously considered.

APPENDIX A: DISTRIBUTION FUNCTION
FOR UNTRAPPED MOTION „NÌ1…

Like the analysis of the trapped motion presented abo
we introduce a functionz(t) by

sin@z~t!#5sin@u~t!/2#. ~A1!

Differentiating both sides of Eq.~A1! and by using Eq.~16!
we obtain
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dz~t!

dt
56NA12N22 sin2@z~t!#, ~A2!

which has the solution

z~t!56am~Nt1f,N21!, ~A3!

wheref is a constant. Inserting Eq.~A3! into Eq. ~16!, we
obtain the velocity

h~t!562N dn~Nt1f,N21!, ~A4!

where dn(Nt1f,N21) is a Jacobian elliptic tangent func
tion @40,41#, 1 is for initial h(0).0, and 2 for initial
h(0),0. Equation~A4! shows that an untrapped partic
performs periodic motion whose period is given by

P̃untrap5
2

N
K~N21!, ~A5!

whereK(N21) is a complete Jacobian elliptic integral of th
first kind @40,41#. Integrating Eq.~A4!, the difference be-
tween the phaseu(t) and the initial phaseu(0) is deter-
mined by

u~t!2u~0!56 i lnS cnS Nt1f,
1

ND2 i snS Nt1f,
1

ND
cnS w,

1

ND2 i snS w,
1

ND D
62mp, ~A6!

with i 2521, m is equal to the integer part oft/ P̃untrap, and
w52mK(N21)1f. Equations~A4! and ~A6! are solutions
of Eqs.~11! and ~12!.

Now we begin to perform an inverse procedure to reco
the initial statesu(0) andh(0) from u(t) andh(t). From
Eq. ~A4!, we obtain the initial velocity

h~0!562N dn~f,N21!. ~A7!

Using f5Nt1f2Nt and the addition theory of elliptic
functions, from Eq.~A7!, we obtain the initial velocity
.

h~0!52N

dnS Nt1f,
1

NDdnS Nt,
1

ND1
1

N
snS Nt1f,

1

ND snS Nt,
1

ND cnS Nt1f,
1

ND cnS Nt,
1

ND
12S sn~Nt1f,N21!sn~Nt,N21!

N D 2 . ~A8!

We next determine the relation of thef-dependent terms in Eq.~A8! with u(t) andh(t). By differentiating both sides of Eq
~A4! and using Eq.~12!, we obtain

sin@u~t!#562 sn~Nt1f,N21!cn~Nt1f,N21!. ~A9!

Using Eqs.~A4! and ~A9!, from Eq. ~A8! we obtain the initial velocity
7-7
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h~0!5

h~t!dnS Nt,
1

ND1N21 sin@u~t!#sn~Nt,N21!cn~Nt,N21!

@cn~Nt,N21!#21S h~t!sn~Nt,N21!

2N D 2 . ~A10!

Next we investigateu(0) using Eq. ~A6!. Using the addition theory of Jacobian elliptical functions, cn(w,N21) and
sn(w,N21) are determined by

snS w,
1

ND5

snS Nt1f,
1

ND cnS Nt8,
1

NDdnS Nt8,
1

ND2cnS Nt1f,
1

NDdnS Nt1f,
1

ND snS Nt8,
1

ND
12@N21 sn~Nt1f,N21!sn~Nt8,N21!#2

~A11!

and

cnS w,
1

ND5

cnS Nt1f,
1

ND cnS Nt8,
1

ND1snS Nt1f,
1

NDdnS Nt1f,
1

ND snS Nt8,
1

NDdnS Nt8,
1

ND
12@N21 sn~Nt1f,N21!sn~Nt8,N21!#2

, ~A12!
iod

o
he
wheret85t2mP̃untrap. From Eq.~A4!, we have

dn~Nt1f,N21!56h~t!/~2N!. ~A13!

Using the relation

sn~Nt1f,N21!5NA12dn~Nt1f,N21!2,

we have

sn~Nt1f,N21!5A4N22h~t!2/2. ~A14!

By further inserting Eq.~A14! into Eq. ~A9!, we obtain

cn~Nt1f,N21!56 sin@u~t!#/@2N sn~Nt1f,N21!#.

~A15!

By inserting Eqs.~A11!–~A15! into ~A6!, we can getu(0),
and inserting Eq.~A10! and Eq.~A6! into Eq. ~14!, we ob-
tain f „u(t),h(t),t….
a
,

s

01660
APPENDIX B: TIME REQUIRED FOR EACH DYNAMICAL
REFLECTION PROCESS

The time required for the second process is half a per
of the oscillation, i.e.,Ptrap(N)/252K(N), wherePtrap(N) is
defined in Eq.~22!.

In Fig. 2, the time needed for molecules to travel fromF
to C is two times that fromF to (0,2N), which is the middle
point of the trajectory fromF to C. By setting u(t)50,
h(t)52N, and h(0)5hD in Eq. ~26! we obtain that the
time for molecules to travel fromF to (0,2N) is
cn21

„hD /(2N),N…. The time required for molecules t
move fromC to D, corresponding to the first process, is t
time for moving fromF to D minus that fromF to C, given
by 2@K(N)2cn21

„hD /(2N),N…#. The time for the third
process can be obtained in a similar manner.
-

.N.
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